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Intent

 Assuming some knowledge about serial
computing, walk away from these
lectures with a basic understanding of:
 Parallel programming terminology
 Parallel computing architectures
 Parallel programming models
 Some existing methods and tools to help
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The Laboratory Computing
Resource Center (LCRC)

 Founded in 2002 to promote wide spread use of
high performance computing across the lab

 LCRC Application Engineers
 Jazz

 Compute - 350 nodes, each with a 2.4 GHz Pentium
Xeon

  Memory - 175 nodes with 2 GB of RAM, 175 nodes
with 1 GB of RAM

 Storage - 20 TB of clusterwide disk: 10 TB GFS and 10
TB PVFS

 Network - Myrinet 2000 4
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Outline

 Define Parallel Programming
 Parallel Architecture
 Parallel Programming Models
 When to Parallelize
 Overview: How to Parallelize Code
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What is Parallelism?
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Serial Computing

 Traditional computing model
 One CPU
 One copy of the data

 The CPU performs one
operation at a time.
 Single Instruction, Single Data

(SISD)

 Single task is implemented

CPU

Memory
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Parallel Computing

 Simultaneous use of multiple computing
resources to solve a problem.

 Parallel computing
 Breaks serial tasks into multiple tasks
 Works on tasks simultaneously
 Coordinates those tasks
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Why Parallel Compute?

 Potential faster time to solution
 CPU limitations

 Solve larger problems
 Memory limitations

 Cost savings
 Cheap PCs linked rather than more

expensive architectures
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Parallel Computing Hardware

 Single computer, multiple CPUs
 Multiple computers, connected by

network
 A combination of the two
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Parallel Programming Model

 Defines how the programmer creates and
coordinates parallel tasks

 Architecture, libraries, compilers, tools
 Create the model
 Directs parts of algorithm
 Does not map one to one to architecture
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Basic Parallel Architecture
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Why Talk About Architecture?

 Helps understand methods of
parallelizing codes

 Useful when parallelizing algorithms
 Can make parallel choices easier

 Useful for performance
 Get the buzz words
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Architecture Taxonomy

 SISD : Single Instruction, Single Data
 Traditional Serial Computing

 SIMD : Singe Instruction, Multiple Data
 Vector Pipelines

 MISD : Multiple Instruction, Single Data
 Rare

 MIMD : Multiple Instruction,Multiple Data
 Standard Parallel Computers
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SISD

 Standard serial
computing model

 One copy of the data

 Sequentially compute
 One instruction per

clock cycle
CPU

Memory
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SIMD

 Like SISD, but, each
instruction can
operate on multiple
data

 Multiple data
streams, one
instruction

 Vector machine

CPU

Memory
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MIMD

 Very common: All multiple processor
configurations

 Each processor executes a totally
independent instruction stream on
independent data stream

 Can be affordable
 Requires load balancing
 Can be difficult to program
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MIMD : Shared Memory

 Symmetric Multiprocessor
 SMP

 Each CPU is operating on
different data, even though
it is all in the same physical
memory

 Pros
 Easy for user to utilize
 Data sharing is fast

 Cons
 Bandwidth clogs

MemoryCPU CPU

CPU

CPU
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MIMD : Distributed Memory

 Massively Parallel
Processors (MPP)

 Multiple SISD systems
linked together with a
network.

 The network moves the
model from SISD to a MIMD

 Pro :Memory scalable
 Con

 Harder to program
 Bandwidth

Memory

CPU

Memory

CPU

Memory

CPU

Memory

CPU
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MIMD : Hybrid Distributed
Memory

 MPP Memory Arch.
 Multiple SMP-like

systems (PCs) linked
together with a network.

 The network moves the
model from SISD to a
MIMD

 Hybrid of shared
memory and distributed

Memory

C
PU

C
PU

Memory

Memory

Memory

C
PU

C
PU

C
PU

C
PU

C
PU

C
PU
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Memory Architectures

 Shared Memory
 Multiple processors, one memory

 Global address space
 Each process has equal access to memory
 UMA, CC-UMA, NUMA, CC-NUMA

 Distributed Memory
 Each processor has own address space
 Requires communication/messages to

exchange data with other processors



6

21

Jazz LCRC

Parallel Programming
Models
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What is a Parallel
Programming Model?

 Method by which the programmer creates
parallel tasks
 An abstraction of the architecture

 Models do not map one-to-one to architectures
 How to choose the model?

 Architecture
 Algorithm
 Capabilities/Time/Resources

23

Jazz LCRC

High-Level Models

 SPMD : Single Process, Multiple Data
 Every process

 running the same executable
 has different data
 can have logic to allow different processes to perform

different tasks

 MPI
 MPMD : Multiple Process, Multiple Data

 Every process
 can execute the same or a different executable
 will work on different data
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High-Level Models - Schematic

a.out a.out a.out a.out

a.out b.out c.out a.out

…

…

SPMD

MPMD

tasks
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Lower Level Models
 Shared Memory

 Global memory space
 Data Parallel

 Shared or Distributed memory splitting a larger data
structure

 Message Passing
 MPI, PVM, libraries using message passing

 Threads
 One process, one memory space, multiple threads

 Hybrid
 Ex: Threads and Message Passing
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Shared Memory and Threads

 Shared Memory - shmem
 Can be very easy to use
 Hardware often more expensive, less common

 Threads - OpenMP, POSIX
 Used on shared memory and hybrid systems
 Harder to use, but, very flexible
 Threads+Message Passing

 One of the best ways to make use of hybrid
systems
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Data Parallel

 Each processor works on different part of
the same data structure
 Data split across processors
 Messages are invisible

 Often built on top of message passing library

 SPMD approach
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Data Parallel Implementations

 Data parallel constructs added to code
and compiled with data parallel compiler

 Implementations
 F90/HPF Implementations
 Global Arrays
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Message Passing

 Set of processors only using local memory
 Processors communicate

 Send/Receive data
 Synchronization

 Library Implementations
 MPI, PVM
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Pro’s and Cons

 Shared Memory and Data Parallel
 Pro: Easy for programmer

 Normally done mostly by compiler

 Con: Memory ownership less clear
 Con: Potential higher cost of hardware

 Threads and Message Passing
 Pro: Can make excellent use of hybrid architectures
 Con: Everything done explicitly by programmer

 Need a good deal of knowledge to implement well
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Automatic Parallelization

 Fully Automatic
 Compiler parses code

 Programmer Directed
 In-line directives
 Compiler flags
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Problems with Automatic

 Wrong results may be produced
 Performance may degrade
 Limited to what it can identify

 Loops
 Complex code not helped

 Most automatic parallelization tools are
for Fortran (HPF)

So, we go with manual methods
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How To Parallelize
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When to Parallelize - Revisited

 Limited by memory
 After fully optimized serial version

 CPU and Memory usage

 Potential faster time to solution
 Dependant on algorithm.

 Without care, time could be longer!
 Problem Size, Algorithm, Hardware capabilities

 Resources
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Drawbacks to Parallelizing

 Time
 Learning, Implementing, Debugging

 Program Complexity
 Algorithms/Flow can be less clear
 Need more software support

 Reduces portability/reusability
 Tied to software availability
 Performance for few architectures
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Parallelization Process

 What code needs to be parallel and why
 PDE solve, search, image analysis, FFT …

 Has someone else done the work?
 Google is your friend

 Write the code
 If existing in serial, fully debug and optimize

 Debug, Test, and Optimize
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Design Considerations

 Granularity
 Ratio between computation and communication
 Fine Grain/Coarse Grain

 Data dependency
 A[I] = (A[I-1]+A[I+1])/2

 I/O
 Deadlock

 Parallelism gets trapped
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New Code Components

 Initialization
 Query parallel state

 Identify process
 Identify number of processes

 Exchange data between processes
 Local, Global

 Synchronization
 Barriers, Blocking Communication, Locks

 Finalization
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The Basic MPI Code

program hello
implicit none
include ’mpif.h’
integer id,nprocs,ierr
call MPI_INIT(ierr)
call MPI_COMM_SIZE(MPI_COMM_WORLD,nprocs,ierr)
call MPI_COMM_RANK(MPI_COMM_WORLD,id,ierr)
print*,*”Hello from processor”,id,”out of”,nprocs
call MPI FINALIZE(ierr)
end
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I/O

 I/O is design and performance limiter
 Large communication and time costs

 Libraries in serial and parallel
 NetCDF, HDF5
 Even in serial can help with design

 Parallel File Systems improving
 Parallelizing I/O a big topic

 Similar process to parallelizing code
 Keep I/O to a minimum
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Deadlock

 A condition where two or more tasks are
waiting for a message that will never come

Receive
Task2, Y

Send 
Task2, X

X = 4
Task 1

Receive
Task2, X

Send 
Task2, Y

Y = 4
Task 2

 Change order of
send/recvs

 Change
algorithm

 Change to non-
blocking
communication
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Performance Considerations
 Amdahl’s Law

 Potential code speedup is a function of the
code that can be parallelized(P)

 Load Balancing
 Communication/Bandwidth
 I/O

N : Number of processes
S: 1-P, fraction of code that is serial
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Load Balancing

 Might be the hardest component
 Balance communication/computation

 Dependant
 Requirements of algorithm
 Hardware

 Memory/CPU changes

 Performance studies are your friend

Work Wait

Work

Work  Wait

 Wait
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Steps to Parallelize

 Identify computational hotspots in code

 Partition problem into smaller tasks

 Identify communication between tasks

 Agglomerate tasks into even larger tasks

 Map tasks to processors
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ProblemPartition

Communicate

Agglomerate

Map

Steps to Parallelize
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To Start

 Understand the algorithm
 Cannot parallelize a code without

understanding how it works.
 Might need entirely new algorithm

 Programming Model
 We will go with MP examples
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Parallel Pi
Simple First Example

 “Monte Carlo” Pi
 Enscribe a circle in a square
 Randomly generate points in the square
 Determine points also in the circle
 R = (Points in circle)/(Points in square)
 Pi ~ 4R

 Very easily parallel

48

Jazz LCRC

Monte Carlo Pi

 Pi ~ 4(Points in Circle/Points in Square)
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Pi: Serial Pseudo Code
NumPoints = 10000
NumInCircle = 0
do count = 1,NumPoints
  generate random number from 0-1
  xcoordinate = random1
  generate random number from 0-1
  ycoordinate = random2
  if coords are inside circle then
     NumInCircle++
  end if
end do
PI = 4.0*NumInCircle/NumPoints
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Parallel Pi PsuedoCode
NumPoints   = 10000; NumInCircle = 0
NumProcs = number of processors
localNumPoints = NumPoints/NumProcs
find out if I am MASTER or WORKER
do j = 1,localNumPoints
  generate random coordinates
  if random coords are inside circle
     NumInCircle++
end do
if I am MASTER
 Receive NumInCircle from all processors
 compute PI
else if I am WORKER
 Send NumInCircle to master
endif
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Understand the Algorithm

 The Method
 Computation and data components
 New methods

 The Performance
 Where time is spent (Hotspots)
 gprof

These

Not these

The Loop:
do count=1,numPoints
   random coords
   are coords in circle?
end Loop
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Partition the Algorithm

 Functional partition
 Tasks based on function
 Can be totally different functions
 Ex: subroutines

 Data partition
 Splitting an array

 Both

Functional:
Loops over only localNumPoints
Calculate pi from points
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Domain Decomposition

 A common data partitioning
 Huge impact of load balancing

 Work per unit cell
 Dynamic assignment/grid
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Functional Decomposition

 Especially useful when there is less data
dependency
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Communication
Patterns

10

32
One to All
Personalized
(Scatter)

10

32
Collective
(Gather)

0 1 2 3

Shift

10

2

All to All10

32

Point to Point
SendRecv

10

32
One to All (Broadcast)
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Communicators

COMM1

COMM2

Groups of processors

MPI_COMM_WORLD
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Communication

 Same patterns for MP and data
parallel

 Local Communication
 Tasks communicate with small

numbers of local tasks
 Global Communication

 One or more tasks talk all non-local
tasks

 Communication patterns
 Static or runtime?

Each processor sends
 localNumPoints to master 

(can be collective pattern)

58

Jazz LCRC

Two Common Global Ops

 MPI_BCAST(buffer, count, data type,
root, communicator)

MPI_REDUCE(send buffer, recv buffer,
count, data type, operation, root,
communicator)

 MPI SUM
MPI PROD
MPI MIN
MPI MAX
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Communication
Considerations

 Cost of communication
 Latency vs. Bandwidth
 Visibility of communication

 Can you stop worrying here?

 Blocking vs. Non-Blocking
 Synchronous vs. Non-Synchronous

 Scale of communication
 Local vs. global

 Efficiency
 Hardware, software, communication method
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Group Tasks

 Agglomerate with algorithm
and performance in mind

 What is worth replicating?
 Sometimes it is more efficient

to have data and computation
duplicated on processes

 Communication, Flexibility,
Software Design
 Competing for attention

One processor
collects
NumInCircle and
calculates Pi
No need to
agglomerate the
calculation of
localNumPoints
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Assign Groups to Processors

 Tasks that can execute concurrently on
different processes

 Tasks that communicate frequently on the
same processors

 Resources may also direct decisions
 Memory per cpu
 Bandwidth

Functional Decomposition
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The Diffusion Equation
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Diffusion Equation

 u(x,y,t) : Temperature of surface
 D : The diffusion coefficient
 Solve on a rectangular plane

 Zero temp at boundary (Dirichlet)
 Some initial temperature T

 Convenient because we know the solution
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Numerical Solution

 Solve with finite difference, forward time
centered
 Solution based on neighbors, previous time step
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Numerical Solution

 What the numerical solution is doing
 A simple to understand approximation

 Finite difference is discrete analog to the derivative
 Approximate solution based on the solution of the

neighbors from previous solution
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Pseudo Code
solnData(size of grid)
oldSolnData(size of grid)

Calculate dt,dx,dy,coefficients, etc
Set initial conditions
Set boundary conditions
Loop over timesteps
  Loop over x
  Loop over y
   solve for solnData(point)from oldSoln
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Profiling of the Serial
Diffusion Equation

 Spends entire time in loop
 Data Dependency

 One cell needs cell data from neighbors

 Granularity
 Limited to every time step - fine

 Load Balancing
 Equal work per cell

 Equal cells per processor
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Parallelize
 Partition Tasks

 Init boundary conditions
 Initial conditions
 Calculate constants
 Data structure split across processors

 Loop limited to local sections of solution
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Communication

 Calculate constants
 Broadcast, or each proc does it

 Boundary conditions
 None if the processors on boundaries calculate

 Initial conditions
 None: we choose constant initial conditions

 Solution data
 Must exchange the cells on borders of splits
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Border Cells / Ghost Points

 When splitting up
solnData, need data
from other processors.

 Need a layer of cells
from each processor

 Need to update each
time step
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Agglomerate

 Calculation of constants
 Duplicate this on processors

 It is cheap, the communication is not

 Boundary Conditions, Initial Conditions,
Solution Data
 These all operate on local section of an array

72

Jazz LCRC

Mapping

 Very natural mapping
 Divide the solution data (physical domain) as

evenly as possible over processors.
 Each agglomeration

 One section of physical domain

 Topology 0 1 32

0 3 21
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Parallel Psuedo Code
Determine numProcs
Divide grid evenly in x

over numProcs
Calculate

local xStart,xStop
xLen = xStop-xStart
solnData(LocalGrid)

oldSolnData(LocalGrid)
Calculate

dx, dy, dt

Coefficients

If LocalGrid on Boundary
Init Boundary Conditions

do x=gc,xLen+gc
do y=gc,yGrid+gc

initial con.

do timesteps
do x=gc,xLen+gc

do y=gc,yGrid+gc

solve
update ghost cells

enddo
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Initialization

 Completely new
 Discover

 Size of job
 Where this task is

 Fortran
 Interfaces almost

same
 No argc, argv
 Add integer ierr

 /*  Declare MPI status*/
MPI_Status status;

/*  Initialize the MPI API: */
MPI_Init(&argc, &argv);

/*  Request my ID number: */
MPI_Comm_rank(MPI_COMM_WORLD,
              &myrank);

/*  Total number of procs */
MPI_Comm_size(MPI_COMM_WORLD,
              &numProcs);
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Decomposition

 Mynni
 Grid points in x
 Divides over

numProcs

 Only one
dimension of
decomposition

/* Compute number of x-direction
 * grid points allocated to me,
 * mynni */
mynniSum = nni + numProcs;
for ( k = 0; k < numProcs; k++ )
{
  mynni[k] = nni / numProcs;
  if ( k < (nni % numProcs) )
  {
    mynni[k]++;
  }
  if (myrank == 0)
   printf("mynni[%i] = %i\n", k,
           mynni[k]);
}
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Topology

 Topology
 Often tied to networking

 Assumes linear
assignment
 Potential error
 Cartcreate, or, new

communicator

 Needed for ghostcells

/* Set the ranks of the
 * processors to the left
 * and right of me.
 * These are the processors
 * I will communicate with.
*/
rightProc = myrank + 1;
if(rightProc == numProcs)
   rightProc =
MPI_PROC_NULL;
leftProc = myrank - 1;
if(leftProc == -1)
   leftProc = MPI_PROC_NULL;
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Alternative Topology

 MPI Topology
functions can do this
for you

 Very useful for
straight forward
decompositions

integer dims[NDIM];
Integer periods[NDIM];

err=MPI_Dims_create ( size,
NUM_DIMS, dims );

err=MPI_Cart_create(
   MPI_COMM_WORLD,
   ndims, &dims, &periods,
   reorder, &comm_cart );

for (i=0;i<NUM_DIMS;i++) {
err=MPI_Cart_shift(
        comm_cart, i, 1,
        &source, &dest);
}
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Ghostcell Exchange

0 1 32

Receives

Sends

ODD:
 send to left ; recv  from left
send to right ; recv from right

EVEN:
recv from right; send to right
recv from leftt; send to left

MPI SEND(buffer,count,datatype,destination,tag,communicator) 
MPI RECV(buffer,count,datatype,source,tag,communicator,status) 
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Ghostcell Exchange

0 1 32

MPI_Sendrecv(send to left, recv from right)
MPI_Sendrecv(send to right, recv from left)

Receives

Sends
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Finalize

 Understand the algorithm
 Where can it be parallelized?
 Where does it need it?
 What packages have done it for me?

 Time

 Planning the parallel implementation can
save  much time!
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I/O

 Very important to think about
 Use of scientific data library

 netCDF, pnetCDF

 Serial I/O
 All data to a single processor

 Parallel I/O
 All processes write to one or more files
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Parallel I/O

 Every process writes out a file
 Many files
 Easier to write code
 Post processing harder

 Logic to write out one file
 More time, More communication
 Library support: hdf5, pnetcdf, MPI I/O
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Scientific Data Libraries

 Can mirror your data structures
 Can reduce costly copies
 Easy to understand the process

 Libraries allow self discovery
 Easy content browsing
 Portability
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Data Library I/O Looks Like

Data Structures

File

0 1 32

Master

File

0 1 32

File

Single Alg

Serial I/O for Parallel Alg.

Parallel I/O for Parallel Alg.
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Jumpshot

 MPE Application from MCS
 Illustrates the communication patterns

and load balancing of application
 Understanding of applications
 Development of applications
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Web Resources

 Designing and Building Parallel Programs
 http://www-unix.mcs.anl.gov/dbpp/

 Tutorials from Maui High Performance
Computing Center
 http://www.mhpcc.edu/training/tutorials/Tutoria
ls.html

 LLNL HPC Training
 http://www.llnl.gov/computing/training/#worksho
ps

 Jazz Web Page
 http://www.lcrc.anl.gov
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Some Parallel Libraries

 Linear Algebra for Dense Systems
 The BLAS , LAPACK, BLACS, PBLAS,

ScaLAPACK

 Sparse Linear Algebra
 The Sparse BLAS, The PIM Library

 Other Parallel Libraries
 PESSL, NAG Parallel Libraries, PETSc
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A Few Tools
 Profiling

 Serial: gprof
 Parallel: jumpshot

 Debugging
 Serial: ddd, gdb,
 Totalview

 Parallel Scientific applications on Jazz
 Star-CD, IDL, MatLab, Gaussian98, Materials Studio

(MSI)
 Globus
 Intel, Portland Group, Nag


